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RELIABILITY AND STRUCTURAL INTEGRITY

J. R, Davidson

NASA Tangley Research Center, Hampton, Va., 23665

ABSTRACT

An aualytic model is developed to calculate the reliability
of a structure after it is inspected for cracks. The model
accounts for the growth of undiscovered cracks betweer inspec-
tions and their effect upon the reliability after subs:quent
inspections. The model is vased upon a differential form of
Bayes' Theorem for reliability, and upon fracture mechanics for
erack growth.
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SYMBOLS
Half~lenpth of crack
Critical half-langth of crack

Threshold half-length of crack below which no cracks
are detected

Half-length of crack whose probability of detection is
specified to be C.9

Half-liength of crack which grows to infinity
petween inspections

Event "a crack is indicated"

Tvent "a crack is not indicated"

Constants

Probability that a crack is indicated, given that it
is present

Equals 1 - f[Blal
Final half-length of crack

Probability of surviving one period with no initial
inspecstion

Probability of surviving one period with an initial
inspecticn
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R,33 Probability of surviving one period, given that the
© structuee passed inspection at tg, survived onec

inspection period, then passed a second inspection
% Half=length of crack which pgrows to a, between

inapections
INTRODUCTION

Cracks occasionally appear in structures. They grow larger
under repeated loads. If a structure is to remain strong, the
cracks must be detected and repaired. The reliability of the
structure will depend upon how many cracks are present, how long.
they are, and how well they can be detected so that they can be
repaired.

Recent (unpublished) studies of crack detectability have
established some probabilities of crack detection, given that a
crack exists, The purpose of the present paper is to develop the
methodology by which the reliability after inspection can be
calculated from the reliability before inspection and the proba-
bility of crack detection. The method takes into account the
variability of detection probability with crack size and the
growth of cracks between inspections. The probability of multi-
ple cracks in a structure is teken to be small compared with the
probabilities of one crack or no crack; the multiple crack situa-
tions are beyond the scope of this paper.

CRACK SIZES AND DETECTION

In any structure, the crack population can be divided into
two categories: potentlal fatigue cracks which have not initi-
ated yet and which will not become detectably large for one or
two orders of magnitude more flights than the second category of
cracks; and cracks which were there initially, or which have
already been initiated by cyclic or repeated stresses. A proba-
bility density function for cracks which represents both cate-
gories 1s

_Bga
Co 5(a - o) + C, B, e for a<a,

gla) = ( (1)
0 for a > a
c
where &(a - o) is the Dirac delta function and Cp is the frac-
tion of cracks which have not yet initiated. (Note: Mathemati-
cally, Cy 15 @ normalizing constant.) It was assumed that no
structures will appear for routine inspection if they already
have crackes longer than the critical crack length, a,. Under
these conditions Cp and B, are related.
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1L ~C ]
C. = m_.._.—--o—-— (2) o
"By
1L - e

Consequently, the parameters Cn and Bp are independently
adjustable to fit Equation (1) to data from actual experiences.
A typical curve is sketched in Figure 1. L :

%\—-SPIKE ACCOUNTS FOR NON-INiTIATED CRACKS

l J ‘ 1 L | - t v . 4
a. 78" o .
S HALF-LENGTH OF CRACK, a (o

Figure 1. An illustration of the probability density function
for flaw sizes. Most values of parameters gave functions which
decreased much more rapidly shan the curve shown.

Crack detectability varies with crack size. In general,
during nondestructive inspection, large cracks are more easily
found than small cracks. A detection function which represents
the detectability, given that a crack is present, is

0 for a S.ao !
-Bl(a-ao)) (3) i‘

for a > a 4
- 0

£(B/a) = (
Cl\l - e

where &, 1is the zareshold of dzuection, and C1 <1 is the
asymptote for the probability of detection (see Fig. 2). The
inequality, Cq < i, represents tae fact that occasionally quite  ——
large cracks are overlooked.




e

1.0

f(Bla) .5 I

a0=0.5

%7 c

o

0 10 20 30 40 50
HALF-LENGTH OF CRACK, a mm

Pigure 2. Probability a crack is discovered if it exists.
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For this paper, the numerical values used for the probabil-
ity of detection function were Cq = 0.98; the threshold ag
was 0.9 mm; the crack length which was detectable with probabil-
ity 0.9 was ag = 2.0 mm; the critical crack length was
ag = DO mm.

CRACK GROWTH AND INSPECTTION PERIOD

Unrepaired cracks grow. From fracture mechanics, a simple
crack growth expression is

da . .h

where F 1s the number of flights and Cz &and n arc material

constants. For aluminum, titanium, and aircraft steels 1 < n<2

[1]. One way to determine C» might be by flight-by-flight type
laboratory tests. Equation (ﬁ) can be integrated,
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1 . r
f d.—% = f C3 dy
b a 0

from which

1 - 1 -
—L(n-l) b(n-l)

(n - TL)C5 F (5)

where F 1is the number of flights between inspections, a 1is the
crack length just after the jth inspection, and 1 1is the length
just before the (J +1)th inspection. Define "m" as the number
of intervals of length (t, - tg)/m needed for a crack to grow from
ag at time tg to ac at time % (see Fig. 3): then

1 1 1 a
F = - = (6)
mCB(n-l) [asn-l acn-l:l C3(n-l)
where
_1 1 1
““n [ n-1 n-l}
a a
S c
TIME OF EVENT
t s t
S = C..
l | AAANAAA ____[
1 2 3 (m+1)

INSPECTION NUMBER

Figure 3. Relations among times, inspection periods, and
inspection numbers.

From Equations (5) and (6)

1
;ﬁ:f = ;%:T -a (7)

Define =z as the size of the crack which will grow to a, during onc
ingpection period.
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Algso, lct a¥ be the value of "b" atl which the right-hand
side of Equation (7) becomes zero and "1" bocomes infinite.

1
o = (L) (9)
@
Figure 1 shows how ag, z, a¥, and ae are ordered. Figure 4
shows how 2z and a* vary with the number of inspections, m,
between tg and tg.
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Figure 4. Crack, 2, which reaches &, between inspections; and
crack, a¥, which reaches infinity between inspections.

ANALYSIS FOR RELIABILITY

The unreliability, or probabilivy that a structure will not
last from onc inspection to the next, cquals the probability that
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" (wherce z < by < ag)
he period between
before the

an undiscovered crack of length by
remains in the structure at the start of t
inspections; such a crack will grow to excced a¢

next inspection.

the structure will last through one

The probability that
t a previous inspection is

inspection interval withou

a
c
oL = 1 -\/; g(a)da

(e-Bzz - ethac) (10)

=
|

i}

1 - 02

spected will depend upon the prob-
f.) for undiscovered cracks. This

Theorem [2]. %ne p.d.f. for

However, the reliability if in
ability density function (p.a.
p.d.f. can be found from Bayes'

undiscovered cracks is
tIB'|ale(a) (11)

hla/B'1 =
a
c
JF r[8' lalg(a)da
0

where the prime indicates "ob." The reliability after the first
inspection is

a'C
- '1 “
1= 1L fZ' hla|B'lda

1 - gl/gl

=
1]

(12)

where

B “Boe
¢, = Cp(L - Cl)'(e - e )
C1CaPo [e'(ﬁl”“ﬂe)”ﬁlao _ e-(Bl+BE)e'c+B1ao]
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R ol sl d ol id o Aititdnikiicinanl

~Pan ( -Baa 'BPB'C)
f‘,l:()oi-cg(l'\-e ‘O)+CQ(1.-C]~) e “%9. ¢ ~
. 1CaPo [@'32% ) _‘(Bl.+32)‘*c+ﬁ1"‘o]
(B +85)

Not all of the cracks which were undiscovered during the
first inspection will cause failure; most cracks were shorter
than z. But now, during the period between the first and second
inspection, these overlooked or undetectable cracks will grow,
and some may become longer than z; if these are overlooked during
the second inspection, they will grow to exceed a, before the
third inspection. Consequently, the unreliability (probability
of not surviving until the third inspection) is the integral from
z to a, of a new di...ibution function which represents grown
cracks, This function can be obtained from h[aIB'] [3]:

n(alB') $ £(8']1)

hy[1[B'] = by(1) = — (13)
¢ vy R o
nlq|B") 5 T8 1141
0
= L
£
where
n-1 -< L )
Q- [(;) +a] T (14)
Specifically,
s
-B,Q
[cos(z-o)+c:2;32e 2}% for 0<1<a_

-BEQ( -Bl(l-a ))d n-1 _(
o’} dQ 1
Ceﬁge 1- Cl + C1 e d—l- for aoil _<_ {(a—o—) -Q

r =< -B,Q -8, (Q-a ) -B,(1-a )
2 ( 1 o} )( . 1 o ) dQ
n-1
for[(l—-) -o.J <1<a
a - ="
o)
kp for 1 > a

c

n-1,
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This function does not account for structures in which cracks
grew longer than a, before the second inspection; these struc-
tures were regarded as having removed themselves from further
consideration. The reliability of those structures which survive
until — and then pass -~ the second inspection is

a

¢
R25 =1 -\/; hg(l)dl
=1 - t,/k, (15)
where
-B,R(2z) -B,a
§2 = 02(1 - Cl)z(e 2 - e 2 c)

+

C,CaBo(1 - C)) eelao(e-(sl+se)Q(z) ] e—(sl+32)z)
5, + B,)

e -

| Biao( -B(z)-Bz  ~(B *B,)a )
o (¢ e, et o( 2 1 1"P2/%¢

2 /
Cl 0232 \e'Blz'(Bl+32)Q(z)

-Blac-(al+82)z) 28,8,
+ (BI_I—E;T e

- e,,, - .

a

B.a e
17
Cy (1 - C))CpBy, e b/;

-B,R-B,1
e e 1 ai

C1 CabiBy B3, Pl ~By1-(p48,)0
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W = 1 T A 2

-pQ(a )) [ -pala ) -Ba ) :
&, = Cq 4-02(1-9 2T +C2(l-01)(e A
-pR(a ) ~pyy(a )+(p,~B,)a )
+ 0102(0 270" 170 L "2

-3, 8 -B52%
C2(l - Cl)2<e 2o o '® )

e

023201(1 - Cl) Bla0<e-(Bl+32)a0 } e"(Bl+82)Z>

t TR By
-Ban-Bl(Y(ao)_ao) -B2Z-Bl(ac-ao))
+ C2Cl(l - Cl)(e - e i
2
N Cgcl 32 (e-Bly(aO)-(Bl+Bg)aO ) -Blac-(Bl+Bg)z)egﬁlaO
(B, *Bp) 1
v(ag) g g-p. (1-a )
-ccaf e 21 g
172”1
a
(o]
a
¢ -B,Q-B,(1-a )
2 1 o
- cgcl(l - Cl)Blf e di

y(a,)

2 a
} CEB2C1 Bl ezBlaO c e-(B1+Be)Q’Bll ar
:Bl + 52} y(ao)

where

y(x) =[(;l(-)n-l - a]

RESULTS AND DISCUSSION

Figure 4 contains some implications which help formulate a
game plan for the design and use of a structure. Suppose, for i
some reason, m 1is chosen to be 2. All cracks larger than !
z = 3,85 mm (half-crack length) must be detected if the structure ]
is to survive until the next inspection. If such a crack length
has too low a probability of detection by the nondestructive
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Ingpection procedure, little will be galned by choosing a mate~
rial with higher reacture toughness (erack growth rate is reason-
ably independent of fracture toupghness); at best, even if the
material can be mnde infinitely tough any undiscovered erack
larger than a* = h.,17 mm will st11l causec failure. Instead, the
frequency of inspection should be incercnsed (m chosen larger) so
that the curves for 2 and o* aeparate (cec Wig. 4).

Figure 5 illustrates some typical relationships among the
reliabilities under various conditions. Higher reliabilities are
associated with short inspection periods (large number of inspec-
tions between tg5 and tg, Fig. 3). For some values of Cos B2,
and m the reliability after the second inspection can be lower
than the reliability after the first inspection; this happens
when the probability of a crack which will grow to exceed =z in
one pericd is higher than the probability that a crack exists 4
whose lengin s bovween 2z and a, at the time of the first ‘
inspection. ae snalysis is modeling the real life situaticn
where & cracs is so likely to propagate in a structure that its
reliability decreases with ege.
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. Figure 5. Rcliabilities bevsre ana after the time of the Cirst
inspection (Rp; and Ryp) ana after (Co = .23 Plerack betweon
ag and &, before firsce inspection] = .2) second inspecticn

(§23). See test for values of parameters.
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High reliabilities after inspections are always assoclated
with structures whose reliabllities were high before inspection.
Under certain conditions this implics that an optimum reliability
might be obtained by a nonuniform spacing of Inspections; in par-
ticular, three inspections might be better distributed as two
independent inspections at tg and one inspection two periods
later rather than three equally spaced inspections starting at
tg. Additional cualculations confirmed this,

CONCIUDING REMARKS |

An analytic model for reliability was developed which con-
tained the salient features of practical situations where inspec-
tion procedures are less than absolutely perfect, where crack
detectability is a function of crack length, and where undis-
covered cracks grow larger and influence the reliability of
succeeding inspections. The analysis can be used to study the
effects of various schemes for material choice and inspection i
intervals. 3

sy g iy

The relationships between the crack length which grows to ;
detectable length between inspections, the detectability, and 4
the frequency of inspections shows that inspection frequencies )
may be increased to compensate for imperfect nondestructive -
inspection procedures.

Calculations also indicate that the optimum reliability mey
be obtained from inspection schedules which are not uniformly
spaced. :
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